Automated Classification and Analysis of
Internet Malware

Michael Bailey', Jon Oberheide!, Jon Andersen', Z. Morley Mao®,
Farnam Jahanian!?, and Jose Nazario?

! Electrical Engineering and Computer Science Department
University of Michigan
{mibailey, jonojono, janderse,zmao,farnam}Qumich.edu
2 Arbor Networks
{farnam, jose}@arbor.net

Abstract. Numerous attacks, such as worms, phishing, and botnets,
threaten the availability of the Internet, the integrity of its hosts, and
the privacy of its users. A core element of defense against these attacks
is anti-virus (AV) software—a service that detects, removes, and charac-
terizes these threats. The ability of these products to successfully char-
acterize these threats has far-reaching effects—from facilitating sharing
across organizations, to detecting the emergence of new threats, and as-
sessing risk in quarantine and cleanup. In this paper, we examine the
ability of existing host-based anti-virus products to provide semantically
meaningful information about the malicious software and tools (or mal-
ware) used by attackers. Using a large, recent collection of malware that
spans a variety of attack vectors (e.g., spyware, worms, spam), we show
that different AV products characterize malware in ways that are incon-
sistent across AV products, incomplete across malware, and that fail to
be concise in their semantics. To address these limitations, we propose a
new classification technique that describes malware behavior in terms of
system state changes (e.g., files written, processes created) rather than
in sequences or patterns of system calls. To address the sheer volume
of malware and diversity of its behavior, we provide a method for auto-
matically categorizing these profiles of malware into groups that reflect
similar classes of behaviors and demonstrate how behavior-based cluster-
ing provides a more direct and effective way of classifying and analyzing
Internet malware.

1 Introduction

Many of the most visible and serious problems facing the Internet today depend
on a vast ecosystem of malicious software and tools. Spam, phishing, denial of
service attacks, botnets, and worms largely depend on some form of malicious
code, commonly referred to as malware. Malware is often used to infect the com-
puters of unsuspecting victims by exploiting software vulnerabilities or tricking
users into running malicious code. Understanding this process and how attackers

C. Kruegel, R. Lippmann, and A. Clark (Eds.): RAID 2007, LNCS 4637, pp. 178197 2007.
© Springer-Verlag Berlin Heidelberg 2007

Automated Classification and Analysis of Internet Malware 179

use the backdoors, key loggers, password stealers, and other malware functions
is becoming an increasingly difficult and important problem.

Unfortunately, the complexity of modern malware is making this problem
more difficult. For example, Agobot [3], has been observed to have more than
580 variants since its initial release in 2002. Modern Agobot variants have the
ability to perform DoS attacks, steal bank passwords and account details, prop-
agate over the network using a diverse set of remote exploits, use polymorphism
to evade detection and disassembly, and even patch vulnerabilities and remove
competing malware from an infected system [3]. Making the problem even more
challenging is the increase in the number and diversity of Internet malware. A
recent Microsoft survey found more than 43,000 new variants of backdoor trojans
and bots during the first half of 2006 [20]. Automated and robust approaches to
understanding malware are required to successfully stem the tide.

Previous efforts to automatically classify and analyze malware (e.g., AV, IDS)
focused primarily on content-based signatures. Unfortunately, content-based sig-
natures are inherently susceptible to inaccuracies due to polymorphic and meta-
morphic techniques. In addition, the signatures used by these systems often
focus on a specific exploit behavior—an approach increasingly complicated by
the emergence of multi-vector attacks. As a result, IDS and AV products charac-
terize malware in ways that are inconsistent across products, incomplete across
malware, and that fail to be concise in their semantics. This creates an en-
vironment in which defenders are limited in their ability to share intelligence
across organizations, to detect the emergence of new threats, and to assess risk
in quarantine and cleanup of infections.

To address the limitations of existing automated classification and analysis
tools, we have developed and evaluated a dynamic analysis approach, based on
the execution of malware in virtualized environments and the causal tracing of
the operating system objects created due to malware’s execution. The reduced
collection of these user-visible system state changes (e.g., files written, processes
created) is used to create a fingerprint of the malware’s behavior. These fin-
gerprints are more invariant and directly useful than abstract code sequences
representing programmatic behavior and can be directly used in assessing the
potential damage incurred, enabling detection and classification of new threats,
and assisting in the risk assessment of these threats in mitigation and clean
up. To address the sheer volume of malware and the diversity of its behavior,
we provide a method for automatically categorizing these malware profiles into
groups that reflect similar classes of behaviors. These methods are thoroughly
evaluated in the context of a malware dataset that is large, recent, and diverse
in the set of attack vectors it represents (e.g., spam, worms, bots, spyware).

This paper is organized as follows: Section 2] describes the shortcomings of
existing AV software and enumerates requirements for effective malware clas-
sification. We present our behavior-based fingerprint extraction and fingerprint
clustering algorithm in Section Bl Our detailed evaluation is shown in Section [l
We present existing work in Section [B] offer limitations and future directions in
Section 6l and conclude in Section [71

180 M. Bailey et al.
2 Anti-Virus Clustering of Malware

Host-based AV systems detect and remove malicious threats from end systems.
As a normal part of this process, these AV programs provide a description for the
malware they detected. The ability of these products to successfully characterize
these threats has far-reaching effects—from facilitating sharing across organiza-
tions, to detecting the emergence of new threats, and assessing risk in quarantine
and cleanup. However, for this information to be effective, the descriptions pro-
vided by these systems must be meaningful. In this section, we evaluate the
ability of host-based AV to provide meaningful intelligence on Internet malware.

2.1 Understanding Anti-Virus Malware Labeling

In order to accurately characterize the ability of AV to provide meaningful labels
for malware, we first need to acquire representative datasets. In this paper, we
use three datasets from two sources, as shown in Table I One dataset, legacy,
is taken from a network security community malware collection and consists of
randomly sampled binaries from those posted to the community’s FTP server
in 2004. In addition, we use a large, recent six-month collection of malware
and a six-week subset of that collection at the beginning of the dataset col-
lection period. The small and large datasets are a part of the Arbor Malware
Library (AML). Created by Arbor Networks, Inc. [I], the AML consists of bi-
naries collected by a variety of techniques including Web page crawling [28],
spam traps [26], and honeypot-based vulnerability emulation [2]. Since each of
these methods collects binaries that are installed on the target system
without the user’s permission, the binaries collected are highly likely
to be malicious. Almost 3,700 unique binaries were collected over a six-month
period in late 2006 and early 2007.

Table 1. The datasets used in this paper: A large collection of legacy binaries from
2004, a small six-week collection from 2006, and a large six-month collection of malware
from 2006,/2007. The number of unique labels provided by five AV systems is listed for
each dataset.

Dataset Date Number of Number of Unique Labels
Name Collected Unique MD5s|[McAfee|F-Prot|ClamAV|Trend|Symantec
legacy |01 Jan 2004 - 31 Dec 2004 3,637 116 1216 590 416 57
small |03 Sep 2006 - 22 Oct 2006 893 112 379 253 246 90
large |03 Sep 2006 - 18 Mar 2007 3,698 310 1,544 | 1,102 {2,035 50

After collecting the binaries, we analyzed them using the AV scanners shown
in Table[2l Each of the scanners was the most recent available from each vendor
at the time of the analysis. The virus definitions and engines were updated
uniformly on November 20th, 2006, and then again on March 31st, 2007. Note
that the first update occured more than a year after the legacy collection ended
and one month after the end of the small set collection. The second update was
13 days after the end of the large set collection.

Automated Classification and Analysis of Internet Malware 181

Table 2. Anti-virus software, vendors, versions, and signature files used in this paper.
The small and legacy datasets were evaluated with a version of these systems in No-
vember of 2006 and both small and large were evaluated again with a version of these
systems in March of 2007.

Label Software Vendor Version [Signature File
McAfee [Virus Scan McAfee, Inc. v4900 20 Nov 2006
v5100 31 Mar 2007
F-Prot F-Prot Anti-virus [FRISK Software 4.6.6 20 Nov 2006
International 6.0.6.3 31 Mar 2007

ClamAV [Clam Anti-virus |[Tomasz Kojm and 0.88.6 20 Nov 2006
the ClamAV Team| 0.90.1 31 Mar 2007
Trend PC-cillin Internet |Trend Micro, Inc. [8.000-1001| 20 Nov 2006

Security 2007 8.32.1003 | 31 Mar 2007
Symantec|Norton Anti-virus{Symantec 14.0.0.89 | 20 Nov 2006
2007 Corporation 14.0.3.3 31 Mar 2007

AV systems rarely use the exact same labels for a threat, and users of these
systems have come to expect simple naming differences (e.g., W32Lovsan.worm.a
versus Lovsan versus WORM_MSBLAST.A) across vendors. It has always been
assumed, however, that there existed a simple mapping from one system’s name
space to another, and recently investigators have begun creating projects to unify
these name spaces [4]. Unfortunately, the task appears daunting. Consider, for
example, the number of unique labels created by various systems. The result
in Table [0 is striking—there is a substantial difference in the number of unique
labels created by each AV system. While one might expect small differences, it
is clear that AV vendors disagree not only on what to label a piece of malware,
but also on how many unique labels exist for malware in general.

McAfee
567

36.5%

Fig.1. A Venn diagram of malware labeled as SDBot variants by three AV products
in the legacy dataset. The classification of SDBot is ambiguous.

One simple explanation for these differences in the number of labels is that
some of these AV systems provide a finer level of detail into the threat landscape
than the others. For example, the greater number of unique labels in Table [T for
F-Prot may be the result of F-Prot’s ability to more effectively differentiate small
variations in a family of malware. To investigate this conjecture, we examined the

182 M. Bailey et al.

labels of the legacy dataset produced by the AV systems and, using a collection
of simple heuristics for the labels, we created a pool of malware classified by
F-Prot, McAfee, and ClamAV as SDBot [19]. We then examined the percentage
of time each of the three AV systems classified these malware samples as part
of the same family. The result of this analysis can be seen in Figure[Il Each AV
classifies a number of samples as SDBot, yet the intersection of these different
SDBot families is not clean, since there are many samples that are classified as
SDBot by one AV and as something else by the others. It is clear that these
differences go beyond simple differences in labeling—anti-virus products assign
distinct semantics to differing pieces of malware.

2.2 Properties of a Labeling System

Our previous analysis has provided a great deal of evidence indicating that la-
beling across AV systems does not operate in a way that is useful to researchers,
operators, and end users. Before we evaluate these systems any further, it is im-
portant to precisely define the properties an ideal labeling system should have.
We have identified three key design goals for such a labeling system:

— Consistency. Identical items must and similar items should be assigned the
same label.

— Completeness. A label should be generated for as many items as possible.

— Conciseness. The labels should be sufficient in number to reflect the unique
properties of interest, while avoiding superfluous labels.

2.3 Limitations of Anti-Virus

Having identified consistency, completeness, and conciseness as the design goals
of a labeling system, we are now prepared to investigate the ability of AV systems
to meet these goals.

Table 3. The percentage of time two binaries classified as the same by one AV are
classified the same by other AV systems. Malware is inconsistently classified across AV
vendors.

legacy small
McAfee|F-Prot|ClamAV]|Trend|Symantec|[McAfee|F-Prot|ClamAV][Trend|Symantec
McAfee 100 13 27 39 59 100 25 54 38 17
F-Prot 50 100 96 41 61 45 100 57 35 18
ClamAV 62 57 100 34 68 39 23 100 32 13
Trend 67 18 25 100 55 45 23 52 100 16
Symantec 27 7 13 14 100 42 25 46 33 100

Consistency. To investigate consistency, we grouped malware into categories
based on the labels provided by AV vendors. For each pair of distinct malware
labeled as the same by a particular system, we compared the percentage of time
the same pair was classified by other AV systems as the same. For example, two
binaries in our legacy dataset with different MDb5 checksums were labeled as

Automated Classification and Analysis of Internet Malware 183

Table 4. The percentage of malware samples detected across datasets and AV vendors.
AV does not provide a complete categorization of the datasets.

Dataset|AV Updated||Percentage of Malware Samples Detected
Name McAfee|F-Prot|ClamAV |[Trend Symantec
legacy | 20 Nov 2006 100 99.8 94.8 [93.73 97.4
small | 20 Nov 2006 48.7 61.0 38.4 54.0 76.9
small | 31 Mar 2007 67.4 68.0 55.5 86.8 52.4
large 31 Mar 2007 54.6 76.4 60.1 80.0 51.5

W32-Blaster-worm-a by McAfee. These two binaries were labeled consistently
by F-Prot (both as msblast), and Trend (both as msblast), but inconsistently
by Symantec (one blaster and one not detected) and ClamAV (one blaster, one
dcom.exploit). We then selected each system in turn and used its classification
as the base. For example, Table [3] shows that malware classified by McAfee as
the same was only classified as the same by F-Prot 13% of the time. However,
malware classified by F-Prot as the same was only classified as the same by
McAfee 50% of the time. Not only do AV systems place malware into different
categories, these categories don’t hold the same meaning across systems.

Completeness. As discussed earlier, the design goal for completeness is to
provide a label for each and every item to be classified. For each of the datasets
and AV systems, we examined the percentage of time the AV systems detected
a given piece of malware (and hence provided a label). A small percentage of
malware samples are still undetected a year after the collection of the legacy
datasets (Tabled]). The results for more recent samples are even more profound,
with almost half the samples undetected in the small dataset and one quarter
in the large dataset. The one quarter undetected for the large set is likely an
overestimate of the ability of the AV, as many of the binaries labeled at that
point were many months old (e.g., compare the improvement over time in the
two labeling instances of small). Thus, AV systems do not provide a complete
labeling system.

Table 5. The ways in which various AV products label and group malware. AV labeling
schemes vary widely in how concisely they represent the malware they classify.

legacy(3,637 binaries) small(893 binaries)

Unique Labels [Clusters or Families [[Unique Labels | Clusters or Families
McAfee 116 34 122 95
F-Prot 1216 37 379 62
ClamAV 590 41 253 65
Trend 416 46 246 72
Symantec 57 31 90 81

Conciseness. Conciseness refers to the ability of the labeling system to pro-
vide a label that reflects the important characteristics of the sample without
superfluous semantics. In particular, we find that a label that carries either too
much or too little meaning has minimal value. To investigate this property, we
examined the number and types of labels and groups provided by the AV sys-
tems. Table [B] shows the number of unique labels provided by the AV systems

184 M. Bailey et al.

as well as the number of unique families these labels belong to. In this analysis,
the family is a generalized label heuristically extracted from the literal string,
which contains the portion intended to be human-readable. For example, the
literal labels returned by a AV system W32-Sdbot.AC and Sdbot.42, are both
in the “sdbot” family. An interesting observation from this table is that these
systems vary widely in how concisely they represent malware. Vendors such as
Symantec appear to employ a general approach, reducing samples to a small
handful of labels and families. On the other extreme, FProt appears to aggres-
sively label new instances, providing thousands of unique labels for malware,
but still maintaining a small number of groups or families to which these labels
belong.

3 Behavior-Based Malware Clustering

As we described in the previous section, any meaningful labeling system must
achieve consistency, completeness, and conciseness, and existing approaches,
such as those used by anti-virus systems, fail to perform well on these met-
rics. To address these limitations, we propose an approach based on the actual
execution of malware samples and observation of their persistent state changes.
These state changes, when taken together, make a behavioral fingerprint, which
can then be clustered with other fingerprints to define classes and subclasses of
malware that exhibit similar state change behaviors. In this section, we discuss
our definition and generation of these behavioral fingerprints and the techniques
for clustering them.

3.1 Defining and Generating Malware Behaviors

Previous work in behavioral signatures has been based at the abstraction level
of low-level system events, such as individual system calls. In our system, the
intent is to capture what the malware actually does on the system. Such in-
formation is more invariant and directly useful to assess the potential damage
incurred. Individual system calls may be at a level that is too low for abstract-
ing semantically meaningful information: a higher abstraction level is needed to
effectively describe the behavior of malware. We define the behavior of malware
in terms of non-transient state changes that the malware causes on the system.
State changes are a higher level abstraction than individual system calls, and
they avoid many common obfuscation techniques that foil static analysis as well
as low-level signatures, such as encrypted binaries and non-deterministic event
ordering. In particular, we extract simple descriptions of state changes from the
raw event logs obtained from malware execution. Spawned process names, mod-
ified registry keys, modified file names, and network connection attempts are
extracted from the logs and the list of such state changes becomes a behavioral
profile of a sample of malware.

Observing the malware behavior requires actually executing the binaries. We
execute each binary individually inside a virtual machine [27] with Windows
XP installed. The virtual machine is partially firewalled so that the external

Automated Classification and Analysis of Internet Malware 185

impact of any immediate attack behaviors (e.g., scanning, DDoS, and spam) is
minimized during the limited execution period. The system events are captured
and exported to an external server using the Backtracker system [12]. In addition
to exporting system events, the Backtracker system provides a means of building
causal dependency graphs of these events. The benefit of this approach is that
we can validate that the changes we observe are a direct result of the malware,
and not of some normal system operation.

3.2 Clustering of Malware

While the choice of abstraction and generation of behaviors provides useful infor-
mation to users, operators, and security personnel, the sheer volume of malware
makes manual analysis of each new malware intractable. Our malware source
observed 3,700 samples in a six-month period—over 20 new pieces per day. Each
generated fingerprint, in turn, can exhibit many thousands of individual state
changes (e.g., infecting every .exe on a Windows host). For example, consider
the tiny subset of malware in table[@l The 10 distinct pieces of malware generate
from 10 to 66 different behaviors with a variety of different labels, including
disjoint families, variants, and undetected malware. While some items obviously
belong together in spite of their differences (e.g., C and D), even the composition
of labels across AV systems can not provide a complete grouping of the malware.
Obviously, for these new behavioral fingerprints to be effective, similar behaviors
need to be grouped and appropriate meanings assigned.

Table 6. Ten unique malware samples. For each sample, the number of process, file,
registry, and network behaviors observed and the classifications given by various AV
vendors are listed.

Label[MD5 P/F/R/N |McAfee Trend
A [71b99714cddd66181e54194c44bab9df|8/13/27/0|Not detected W32/Backdoor.QWO
B |be5f889d12fe608e48bel1e883379b7a [8/13/27/0|Not detected W32/Backdoor. QWO
C |dflcda05aab2d366e626eb25b9cba229| 1/1/6/1 |W32/Mytob.gen@MM|W32/IRCBot-based!Maximus
D |5bf169aba400f20cbelb237741eff090 1/1/6/2 |W32/Mytob.gen@MM |Not detected
E |eef804714ab4f89ac847357f3174aald | 1/2/8/3 |PWS-Banker.gen.i W32/Bancos.IQK
F |80f64d342fddcc980ae81d7f8456641e |2/11/28/1|IRC/Flood.gen.b W32/Backdoor.AHJJ
G [12586ef09abc1520c1bal3e998baecd57 | 1/4/3/1 |W32/Pate.b W32/Parite.B
H |ff0f3c170ea69ed266b8690e13daflab 1/2/8/1 |Not detected W32/Bancos.1JG
I [36f6008760bd8dc057ddb1cf99c0b4d7|3/22/29/3|IRC/Generic Flooder |IRC/Zapchast.AK@bd
J |c13f3448119220d006e93608c5ba3e58 |5/32/28/1|Generic BackDoor.f |W32/VB-Backdoor!Maximus

Our approach to generating meaningful labels is achieved through clustering
of the behavioral fingerprints. In the following subsections, we introduce this ap-
proach and the various issues associated with effective clustering, including how
to compare fingerprints, combine them based on their similarity, and determine
which are the most meaningful groups of behaviors.

Comparing Individual Malware Behaviors. While examining individual
behavioral profiles provides useful information on particular malware samples,
our goal is to classify malware and give them meaningful labels. Thus malware
samples must be grouped. One way to group the profiles is to create a distance
metric that measures the difference between any two profiles, and then use the

186 M. Bailey et al.

Table 7. A matrix of the NCD between each of the 10 malware samples in our example

A|B|C|D|E|F|G]|H 1 J
0.06(0.07{0.84]0.84]0.82(0.73(0.80{0.82]0.68]0.77
0.07(0.06|0.84|0.85]0.82(0.73(0.80|0.82]0.68]0.77
0.84{0.84(0.04|0.22(0.45]0.77(0.64]|0.45|0.84]|0.86
0.85(0.85(0.23]0.05(0.45]|0.76(0.62]0.43|0.83]|0.86
0.83]0.83(0.48(0.47(0.03]0.72(0.38]0.09{0.80]0.85
0.71]0.71(0.77]0.76|0.72]0.05(0.77]0.72]0.37]|0.54
0.80(0.80{0.65|0.62]0.38(0.78(0.04|0.35]|0.78]0.86
0.83(0.83]0.48]0.46]0.09(0.73(0.36|0.04]|0.80]0.85
0.67(0.67(0.83]0.82]0.79(0.38(0.77|0.79]|0.05|0.53
0.75(0.75]0.86|0.85]0.83(0.52(0.85|0.83]0.52]|0.08

= Q| = O Q| >

metric for clustering. Our initial naive approach to defining similarity was based
on the concept of edit distance [7]. In this approach, each behavior is treated
as an atomic unit and we measure the number of inserts of deletes of these
atomic behaviors required to transform one behavioral fingerprint into another.
The method is fairly intuitive and straightforward to implement (think the Unix
command diff here); however, it suffers from two major drawbacks:

— Overemphasizing size. When the size of the number of behaviors is large,
the edit distance is effectively equivalent to clustering based on the length
of the feature set. This overemphasizes differences over similarities.

— Behavioral polymorphism. Many of the clusters we observed had few
exact matches for behaviors. This is because the state changes made by mal-
ware may contain simple behavioral polymorphism (e.g., random file names).

To solve these shortcomings we turned to normalized compression distance
(NCD). NCD is a way to provide approximation of information content, and it
has been successfully applied in a number of areas [25/29]. NCD is defined as:

Clz +y) —min(C(z),Cly))
maz(C(z), C(y))

where ”x + y” is the concatenation of x and y, and C(x) is the zlib-compressed
length of x. Intuitively, NCD represents the overlap in information between two
samples. As a result, behaviors that are similar, but not identical, are viewed as
close (e.g., two registry entries with different values, random file names in the
same locations). Normalization addresses the issue of differing information con-
tent. Table[7 shows the normalized compression distance matrix for the malware
described in Table

NCD(z,y) =

Constructing Relationships Between Malware. Once we know the in-
formation content shared between two sets of behavioral fingerprints, we can
combine various pieces of malware based on their similarity. In our approach,
we construct a tree structure based on the well-known hierarchical clustering
algorithm [I1]. In particular, we use pairwise single-linkage clustering, which de-
fines the distance between two clusters as the minimum distance between any
two members of the clusters. We output the hierarchical cluster results as a tree
graph in graphviz’s dot format [14]. Figure 2 shows the generated tree for the
malware in Table [6

Automated Classification and Analysis of Internet Malware 187

[

Fig. 2. On the left, a tree consisting of the malware from Table[f has been clustered via
a hierarchical clustering algorithm whose distance function is normalized compression
distance. On the right, a dendrogram illustrating the distance between various subtrees.

Extracting Meaningful Groups. While the tree-based output of the hierar-
chical clustering algorithm does show the relationships between the information
content of behavioral fingerprints, it does not focus attention on areas of the
tree in which the similarities (or lack thereof) indicate an important group of
malware. Therefore, we need a mechanism to extract meaningful groups from
the tree. A naive approach to this problem would be to set a single threshold
of the differences between two nodes in the tree. However, this can be prob-
lematic as a single uniform distance does not accurately represent the distance
between various subtrees. For example, consider the dendrogram in Figure 2l
The height of many U-shaped lines connecting objects in a hierarchical tree il-
lustrates the distance between the two objects being connected. As the figure
shows, the difference between the information content of subtrees can be sub-
stantial. Therefore, we require an automated means of discovering where the
most important changes occur.

Table 8. The clusters generated via our technique for the malware listed in Table

Cluster |Elements|Overlap |Example
cl [C,D 67.86% [scans 25
c2 |A, B 97.96% |installs a cygwin rootkit
c3 |E, G, H |56.60% |disables AV
ca |F, 1,7 |53.59% |IRC

To address this limitation, we adopt an “inconsistency” measure that is used
to compute the difference in magnitude between distances of clusters so that the
tree can be cut into distinct clusters. Clusters are constructed from the tree by
first calculating the inconsistency coefficient of each cluster, and then threshold-
ing based on the coefficient. The inconsistency coeflicient characterizes each link
in a cluster tree by comparing its length with the average length of other links
at the same level of the hierarchy. The higher the value of this coefficient, the
less similar are the objects connected by the link. The inconsistency coefficient
calculation has one parameter, which is the depth below the level of the current

188 M. Bailey et al.

3e+08 — T

— Inconsistency-based Tree Cutting
250408 Normalized Compression Distance
— - Single-Linkage Hierarchical Clustering

2e+08

Seconds

2. 150408
&

le+08

- 001 s N
E Vi — Inconsistency-based Tree Cutting
I Normalized Compression Distance

5¢+07 - 0001k A — - Single-Linkage Hierarchical Clustering |4

Py 00001 . | . | . | |

| n L 1 n n
20(300 400 500 600 0 100 200 300 400 500 600
Number of Malware to Cluster Number of Malware to Cluster

Fig. 3. The memory and runtime required for performing clustering based on the num-
ber of malware clustered (for a variety of different sized malware behaviors)

link to consider in the calculation. All the links at the current level in the hier-
archy, as well as links down to the given depth below the current level, are used
in the inconsistency calculation.

In Table [§ we see the result of the application of this approach to the exam-
ple malware in Table [6l The 10 unique pieces of malware generate four unique
clusters. Each cluster shows the elements in that cluster, the average number of
unique behaviors in common between the clusters, and an example of a high-level
behavior in common between each binary in the cluster. For example, cluster one
consists of C and D and represents two unique behaviors of mytob, a mass mail-
ing scanning worm. Five of the behaviors observed for C and D are identical
(e.g., scans port 25), but several others exhibit some behavioral polymorphism
(e.g., different run on reboot registry entries). The other three clusters exhibit
similar expected results, with cluster two representing the cygwin backdoors,
cluster three the bancos variants, and cluster four a class of IRC backdoors.

4 Evaluation

To demonstrate the effectiveness of behavioral clustering, we evaluate our tech-
nique on the large and small datasets discussed in section 2l We begin by demon-
strating the runtime performance and the effects of various parameters on the
system. We then show the quality or goodness of the clusters generated by our
system by comparing existing AV groups (e.g., those labeled as SDBot) to our
clusters. Next we discuss our clusters in the context of our completeness, concise-
ness, and consistency criteria presented earlier. Finally, we illustrate the utility
of the clusters by answering relevant questions about the malware samples.

4.1 Performance and Parameterization

We now examine the memory usage and execution time for the hierarchical
clustering algorithm. To obtain these statistics, we take random sub-samples of
length between 1 to 526 samples from the small dataset. For each sub-sample,

Automated Classification and Analysis of Internet Malware 189

w
b1
5

| . 10000

8
3
T

|

2
B
T

|

1000 |-

N
[N
G 2
T

’

{
NS}
L

200 - : ! 10 - 100

Number of Clusters

e

T

:

1

¢

1

S

E [~ Average Cluster Size

— Number of Clusters

I _ 01 . I . | . I . | . | .
0 1 2 3 4 0 05 1 15 2 25 3
Inconsistency Threshold Inconsistency

Fig. 4. On the left, the number of clusters generated for various values of the inconsis-
tency parameter and depth. On the right, the trade-off between the number of clusters,
the average cluster size, and the inconsistency value.

we analyze its run time and memory consumption by running ten trials for each.
The experiments were performed on a Dell PowerEdge 4600 with two Intel Xeon
MP CPUs (3.00GHz), 4 GB of DDR ECC RAM, 146G Cheetah Seagate drive
with an Adaptec 3960D Ultral60 SCSI adapter, running Fedora Core Linux.

We first decompose the entire execution process into five logical steps: (1)
trace collection, (2) state change extraction, (3) NCD distance matrix compu-
tation: an O(N?) operation, (4) clustering the distance matrix into a tree, (5)
cutting the tree into clusters. We focus on the latter three operations specific to
our algorithm for performance evaluation. Figure [l shows the memory usage for
those three steps. As expected, computing NCD requires the most memory with
quadratic growth with an increasing number of malware for clustering. However,
clustering 500 malware samples requires less than 300MB of memory. The mem-
ory usage for the other two components grows at a much slower rate. Examining
the run-time in FigureBlindicates that all three components can complete within
hundreds of seconds for clustering several hundred malware samples.

Phases 1-4 of the system operate without any parameters. However, the tree-
cutting algorithm of phase 5 has two parameters: the inconsistency measure and
the depth value. Intuitively, larger inconsistency measures lead to fewer clus-
ters and larger depth values for computing inconsistency result in more clusters.
Figure M illustrates the effects of depth on the number of clusters produced
for the small dataset for various inconsistency values. Values of between 4-6
for the depth (the 3rd and 4th colored lines) appear to bound the knee of the
curve. In order to evaluate the effect of inconsistency, we fixed thedepth to 4
and evaluated the number of clusters versus the average size of the clusters for
various inconsistency values in the large dataset. The results of this analysis,
shown in Figure[d] show a smooth trade-off until an inconsistency value between
2.2 and 2.3, where the clusters quickly collapse into a single cluster. In order
to generate clusters that are as concise as possible without, losing important

190 M. Bailey et al.

feature information, the experiments in the next selection utilize values of depth
and inconsistency just at the knee of these curves. In this case, it is a depth
value of 4 and an inconsistency value of 2.22.

4.2 Comparing AV Groupings and Behavioral Clustering

To evaluate its effectiveness, we applied our behavioral clustering algorithm on
the large dataset from Section 2l Our algorithm created 403 clusters from the
3,698 individual pieces of malware using parmeters discussed above. While it
is infeasible to list all the clusters here, a list of the clusters, the malware and
behaviors in each cluster, and their AV labels are available at
http://www.eecs.umich.edu/~mibailey/malware/.

As a first approximation of the quality of the clusters produced, we returned
to our example in Section 2 and evaluated the clustering of various malware sam-
ples labeled as SDBot by the AV systems. Recall from our previous discussions
that various AV systems take differing approaches to labeling malware—some
adopt a general approach with malware falling into a few broad categories and
others apply more specific, almost per sample, labels to each binary. We expect
that a behavior-based approach would separate out these more general classes if
their behavior differs, and aggregate across the more specific classes if behaviors
are shared. Looking at these extremes in our sample, Symantec, who adopts
a more general approach, has two binaries identified as back-door.sdbot. They
were divided into separate clusters in our evaluation based on differing processes
created, differing back-door ports, differing methods of process invocation or re-
boot, and the presence of AV avoidance in one of the samples. On the other
extreme, FProt, which has a high propensity to label each malware sample in-
dividually, had 47 samples that were identified as belonging to the sdbot family.
FProt provided 46 unique labels for these samples, nearly one unique label per
sample. In our clustering, these 46 unique labels were collapsed into 15 unique
clusters reflecting their overlap in behaviors. As we noted in Section 2, these
grouping have differing semantics—both Symantec labels were also labled by
FProt as SDBot, but obviously not all FProt labels were identified as SDBot
by Symantec. Both of these extremes demonstrate the utility of our system in
moving toward a labeling scheme that is more concise, complete, and consistent.

4.3 Measuring the Completeness, Conciseness and Consistency

We previously examined how the clusters resulting from the application of our
algorithm to the large dataset compared to classification of AV systems. In this
section, we examine more general characteristics of our clusters in an effort
to demonstrate their quality. In particular, we demonstrate the completeness,
conciseness, and consistency of the generated clusters. Our analysis of these
properties, summarized in Table [are highlighted each in turn:

Completeness. To measure completeness, we examined the number of times
we created a meaningful label for a binary and compared this to the detection
rates of the various AV products. For AV software, “not detected” means no

http://www.eecs.umich.edu/~mibailey/malware/

Automated Classification and Analysis of Internet Malware 191

Table 9. The completeness, conciseness, and consistency of the clusters created with
our algorithm on the large dataset as compared to various AV vendors

Completeness Conciseness Consistency
AV Detected|Not Detected[% Detected|Unique[Clusters or| Identical Behavior
Lables | Families |Labeled Identically
McAfee 2018 1680 54.6% 308 84 47.2%
F-Prot 2958 740 80.0% 1544 194 31.1%
ClamAV | 2244 1454 60.7% 1102 119 34.9%
Trend 2960 738 80.0% 2034 137 44.2%
Symantec| 1904 1794 51.5% 125 107 68.2%
Behavior| 3387 311 91.6% 403 403 100%

signature matched, despite the up-to-date signature information. For behavioral
clustering, “not detected” means that we identified no behavior. A unique aspect
of this system is that our limiting factor is not whether we have seen a particular
binary before, as in a signature system, but whether we are able to extract
meaningful behavior. Any such behavior can be clustered in the context of any
number of previously observed malware instances and differentiated, although
this differentiation is clearly more valuable the more instances that are observed.
In our experiments, roughly 311 binaries exhibited no behavior. The root cause of
these errors, and a more complete discussion of the general limitations of dynamic
path exploration, is available in the Limitations section. A striking observation
from the table is that many AV software systems provide detection rates as low
as 51%, compared to around 91% using behavioral clustering. It should be noted
that these numbers are as much an indication of the mechanisms the vendors
use to collect malware as the AV systems themselves, since signature systems
can clearly only detect what they have seen before. While it would be unfair
to judge the detection rates based on previously unseen malware, we hesitate
to point out that our system for collection of these binaries is not unique. In
fact, while individual AV system rates may vary, over 96 percent of the malware
samples were detected by at least one of the AV systems. These samples are seen
significantly more broadly than our single collection infrastructure and many AV
systems fail to detect them.

Conciseness. Conciseness represented the ability of the labeling system to group
similar items into groups that both reflected the important differences in samples,
but were devoid of superfluous labels. As in Section 2, we evaluate conciseness by
examining the characteristics of the grouping, or clusters, created by AV systems
with those created by our system. We examine the number of unique labels gener-
ated by the AV systems and a heuristically-generated notion of families or groups
of these labels extracted from the human readable strings. For example, the la-
bels W32-Sdbot.AC and Sdbot.42, are both in the “sdbot” family. As we noted
before, AV systems vary widely in how concisely they represent malware. Rela-
tive to other systems, our clusters strike a middle ground in conciseness, providing
fewer labels than the total unique labels of AV systems, but more than the number
of AV system families. This observation is consistent with the previous section—
the AV system families exhibit multiple different behaviors, but these behaviors
have much in common across individual labels.

192 M. Bailey et al.

Consistency. Consistency referred to the ability of a labeling system to identify
similar or identical items in the same way. In the context of our behavioral
system goals, this implies that identical behaviors are placed in the same clusters.
In order to measure the consistency of the system, we examined the binaries
that exhibited exactly identical behavior. In the large sample, roughly 2,200
binaries shared exactly identical behavior with another sample. When grouped,
these 2,200 binaries created 267 groups in which each sample in the group had
exactly the same behavior. We compared the percentage of time the clusters
were identified as the same through our approach, as well as the various AV
system. As expected, our system placed all of the identical behaviors in the
same clusters. However, because consistency is a design goal of the system, the
consistency value for our technique is more a measure of correctness than quality.
What is interesting to note, however, is that AV systems obviously do not share
this same goal. AV systems only labled exactly identical behavior with the same
label roughly 31% to 68% percent of the time.

4.4 Application of Clustering and Behavior Signatures

In this subsection we look at several applications of this technique, in the context
of the clusters, created by our algorithm from the large dataset.

Classifying Emerging Threats. Behavioral classification can be effective in
characterizing emerging threats not yet known or not detected by AV signa-
tures. For example, cluster c¢156 consists of three malware samples that exhibit
malicious bot-related behavior, including IRC command and control activities.
Each of the 75 behaviors observed in the cluster is shared with other samples of
the group—96.92% on average, meaning the malware samples within the cluster
have almost identical behavior. However, none of the AV vendors detect the sam-
ples in this cluster except for F-Prot, which only detects one of the samples. It is
clear that our behavioral classification would assist in identifying these samples
as emerging threats through their extensive malicious behavioral profile.

Resisting Binary Polymorphism. Similarly, behavioral classification can
also assist in grouping an undetected outlier sample (due to polymorphism or
some other deficiency in the AV signatures) together with a common family that
it shares significant behaviors with. For example, cluster ¢80 consists of three
samples that share identical behaviors with distinctive strings ”bling.exe” and
"mOrgan.org.” The samples in this cluster are consistently labeled as a malicious
bot across the AV vendors except Symantec, which fails to identify one of the
samples. To maintain completeness, this outlier sample should be labeled similar
to the other samples based on its behavioral profile.

Examining the Malware Behaviors. Clearly one of the values of any type
of automated security system is not to simply provide detailed information on
individual malware, but also to provide broad analysis on future directions of
malware. Using the behavioral signatures created by our system, we extracted

Automated Classification and Analysis of Internet Malware 193

Table 10. The top five behaviors observed by type

Network Process Files Registry

connects to 80 execs cmd.exe writes winhlp32.dat | uses wininet.dll

connects to 25 execs IEXPLORE.EXE | writes tasklist32.exe | uses PRNG

connects to 6667 | execs regedit.exe writes change.log modifies registered applications
connects to 587 |execs tasklist32.exe writes mirc.ini modifies proxy settings

scans port 80 execs svchost.exe writes svchost.exe modifies mounted drives

the most prevalent behaviors for each of the various categories of behaviors we
monitor. The top five such behaviors in each category are shown in Table

The network behavior seems to conform with agreed notions of how the tasks
are being performed by most malware today. Two of the top five network behav-
iors involve the use of mail ports, presumably for spam. Port 6667 is a common
TIRC port and is often used for remote control of the malware. Two of the ports
are HTTP ports used by systems to check for jailed environments, download
code via the web, or tunnel command and control over what is often an unfil-
tered port. The process behaviors are interesting in that many process executa-
bles are named like common Windows utilities to avoid arousing suspicion (e.g.,
svchost.exe, tasklist32.exe). In addition, some malware uses IEXPLORE.EXE
directly to launch popup ads and redirect users to potential phishing sites. This
use of existing programs and libraries will make simple anomaly detection tech-
niques more difficult. The file writes show common executable names and data
files written to the filesystem by malware. For example, the winhlp32.dat file
is a data file common to many Bancos trojans. Registry keys are also fairly in-
teresting indications of behavior and the prevalence of wininet.dll keys shows
heavy use of existing libraries for network support. The writing to PRNG keys
indicates a heavy use of randomization, as the seed is updated every time a
PRNG-related function is used. As expected, the malware does examine and
modify the registered application on a machine, the TCP/IP proxy settings (in
part to avoid AV), and it queries mounted drives.

5 Related Work

Our work is the first to apply automated clustering to understand malware be-
havior using resulting state changes on the host to identify various malware
families. Related work in malware collection, analysis, and signature generation
has primarily explored static and byte-level signatures [23|17] focusing on in-
variant content. Content-based signatures are insufficient to cope with emerging
threats due to intentional evasion. Behavioral analysis has been proposed as a
solution to deal with polymorphism and metamorphism, where malware changes
its visible instruction sequence (typically the decryptor routine) as it spreads.
Similar to our work, emulating malware to discover spyware behavior by using
anti-spyware tools has been used in measurements studies [22].

There are several abstraction layers at which behavioral profiles can be cre-
ated. Previous work has focused on lower layers, such as individual system
calls [I5I10],instruction-based code templates [6], the initial code run on malware

194 M. Bailey et al.

infection (shellcode) [18], and network connection and session behavior [30]. Such
behavior needs to be effectively elicited. In our work, we chose a higher abstrac-
tion layer for several reasons. In considering the actions of malware, it is not the
individual system calls that define the significant actions that a piece of malware
inflicts upon the infected host; rather, it is the resulting changes in state of the
host. Also, although lower levels may allow signatures that differentiate mal-
ware, they do not provide semantic value in explaining behaviors exhibited by a
malware variant or family. In our work, we define malware by what it actually
does, and thereby build in more semantic meanings to the profiles and clusters
generated.

Various aspects of high-level behavior could be included in the definition of a
behavioral profile. Network behavior may be indicative of malware and has been
used to detect malware infections. For example, Ellis et al. [9] extracted network-
level features, such as similar data being sent from one machine to the next. In
our work, we focus on individual host behavior, including network connection
information but not the data transmitted over the network. Thus, we focus more
on the malware behavior on individual host systems instead of the pattern across
a network.

Recently, Kolter and Maloof [I3] studied applying machine learning to clas-
sify malicious executables using n-grams of byte codes. Our use of hierarchical
clustering based on normalized compression distance is a first step at examining
how statistical techniques are useful in classifying malware, but the features used
are the resulting state changes on the host to be more resistant to evasion and
inaccuracies. Normalized information distance was proposed by Li et al. [16] as
an optimal similarity metric to approximate all other effective similarity metrics.
In previous work [29], NCD was applied to worm executables directly and to the
network traffic generated by worms. Our work applies NCD at a different layer
of abstraction. Rather than applying NCD to the literal malware executables,
we apply NCD to the malware behavior.

6 Limitations and Future Work

Our system is not without limitations and shares common weaknesses asso-
ciated with dynamic analysis. Since the malware samples were executed within
VMware, samples that employ anti-VM evasion techniques may not exhibit their
malicious behavior. To mitigate this limitation, the samples could be run on a
real, non-virtualized system, which would be restored to a clean state after each
simulation. Another limitation is the time period in which behaviors are collected
from the malware execution. In our experiments, each binary was able to run for
five minutes before the virtual machine was terminated. It is possible that cer-
tain behaviors were not observed within this period due to time-dependent or de-
layed activities. Previous research has been done to detect such time-dependent
triggers [8]. A similar limitation is malware that depends on user input, such
as responding to a popup message box, before exhibiting further malicious be-
havior, as mentioned in [22]. Finally, the capabilities and environment of our

Automated Classification and Analysis of Internet Malware 195

virtualized system stayed static throughout our experiments. However, varying
the execution environment by using multiple operating system versions, includ-
ing other memory resident programs such as anti-virus protection engines, and
varying network connectivity and reachability may yield interesting behaviors
not observed in our existing results. Recently, a generic approach to these and
other problems associated with dynamic analysis has be suggested by Moser, et
al. [2I]. Their approach is based on exploring multiple execution paths through
tracing and rewriting key input values in the system, which could yield additional
behaviors unseen in our single execution path.

Our choice of a high level of abstraction may limit fine-grained visibility into
each of the observed behaviors in our system. A path for future work could in-
clude low-level details of each state change to supplement the high-level behavior
description. For example, the actual contents of disk writes and transmitted net-
work packets could be included in a sample’s behavioral profile. In addition, we
plan to evaluate the integration of other high-level behavioral reports from ex-
isting systems, such as Norman [24] and CWSandbox [5], in the future. We will
also investigate further clustering and machine-learning techniques that may
better suit these other types of behavioral profiles. Finally, the causal graphs
from Backtracker, which are used to identify the behaviors in our system, also
include dependency information that is currently ignored. In future versions, this
dependency information could be used to further differentiate behaviors.

7 Conclusion

In this paper, we demonstrated that existing host-based techniques (e.g., anti-
virus) fail to provide useful labels to the malware they encounter. We showed
that AV systems are incomplete in that they fail to detect or provide labels
for between 20 to 49 percent of the malware samples. We noted that when
these systems do provide labels, these labels are not consistent, both within a
single naming convention as well as across multiple vendors and conventions.
Finally, we demonstrated that these systems vary widely in their conciseness—
from aggressive, nearly individual labels that ignore commonalities, to broad
general groups that hide important details.

To address these important limitations, we proposed a novel approach to
the problem of automated malware classification and analysis. Our dynamic
approach executes the malware in a virtualized environment and creates a be-
havioral fingerprint of the malware’s activity. This fingerprint is the set of all
the state changes that are a causal result of the infection, including files mod-
ified, processes created, and network connections. In order to compare these
fingerprints and combine them into meaningful groups of behaviors, we apply
single-linkage hierarchical clustering of the fingerprints using normalized com-
press distance as a distance metric. We demonstrated the usefulness of this
technique by applying it to the automated classification and analysis of 3,700
malware samples collected over the last six months. We compared the clusters
generated to existing malware classification (i.e., AV systems) and showed the

196 M. Bailey et al.

technique’s completeness, conciseness, and consistency. Through these evalua-
tions, we showed that this new technique provides a novel way of understanding
the relationships between malware and is an important step forward in under-
standing and bridging existing malware classifications.

Acknowledgments

This work was supported in part by the Department of Homeland Security (DHS)
under contract numbers NBCHC040146 and NBCHC060090, by the National
Science Foundation (NSF) under contract number CNS 0627445 and by corpo-
rate gifts from Intel Corporation and Cisco Corporation. We would like to thank
our shepherd, Jonathon Giffin, for providing valuable feedback on our submission
as well as the anonymous reviewers for critical and useful comments.

References

1. Arbor malware library (AML) (2006), http://www.arbornetworks.com/

2. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.: The nepenthes plat-
form: An efficient approach to collect malware. In: Zamboni, D., Kruegel, C. (eds.)
RAID 2006. LNCS, vol. 4219, Springer, Heidelberg (2006)

3. Barford, P., Yagneswaran, V.: An inside look at botnets. In: Series: Advances in
Information Security, Springer, Heidelberg (2006)

4. Beck, D., Connolly, J.: The Common Malware Enumeration Initiative. In: Virus
Bulletin Conference (October 2006)

5. Willems, C., Holz, T.: Cwsandbox (2007), http://www.cwsandbox.org/

6. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy (Oakland 2005), Oakland, CA, USA, May 2005, pp. 32-46. ACM Press,
New York (2005)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge, MA (1990)

8. Crandall, J.R., Wassermann, G., de Oliveira, D.A.S.; Su, Z., Wu, S.F., Chong, F.T.:
Temporal Search: Detecting Hidden Malware Timebombs with Virtual Machines.
In: Proceedings of ASPLOS, San Jose, CA, October 2006, ACM Press, New York
(2006)

9. Ellis, D., Aiken, J., Attwood, K., Tenaglia, S.: A Behavioral Approach to Worm
Detection. In: Proceedings of the ACM Workshop on Rapid Malcode (WORMO04),
October 2004, ACM Press, New York (2004)

10. Gao, D., Beck, D., Reiter, J.C.M.K., Song, D.X.: Behavioral distance measurement
using hidden markov models. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006.
LNCS, vol. 4219, pp. 19-40. Springer, Heidelberg (2006)

11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, Heidelberg (2001)

12. King, S.T., Chen, P.M.: Backtracking intrusions. In: Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP’03), Bolton Landing, NY,
USA, October 2003, pp. 223-236. ACM Press, New York (2003)

13. Kolter, J.Z., Maloof, M.A.: Learning to Detect and Classify Malicious Executables
in the Wild. Journal of Machine Learning Research (2007)

http://www.arbornetworks.com/
http://www.cwsandbox.org/

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

Automated Classification and Analysis of Internet Malware 197

Koutsofios, E., North, S.C.: Drawing graphs with dot. Technical report, AT&T
Bell Laboratories, Murray Hill, NJ (October 8, 1993)

Lee, T., Mody, J.J.: Behavioral classification. In: Proceedings of EICAR 2006 (April
2006)

Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.: The similarity metric. In: SODA ’03:
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-
rithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics,
pp. 863-872 (2003)

Li, Z., Sanghi, M., Chen, Y., Kao, M., Chavez, B.: Hamsa: Fast Signature Gener-
ation for Zero-day Polymorphic Worms with Provable Attack Resilience. In: Proc.
of IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Los
Alamitos (2006)

Ma, J., Dunagan, J., Wang, H., Savage, S., Voelker, G.: Finding Diversity in Remote
Code Injection Exploits. In: Proceedings of the USENIX/ACM Internet Measure-
ment Conference, October 2006, ACM Press, New York (2006)

McAfee: W32/Sdbot.worm (April 2003),
http://vil.nai.com/vil/content/v_100454.htm

Microsoft: Microsoft security intelligence report: (January-June 2006) (October
2006), http://www.microsoft.com/technet/security/default.mspx

Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for mal-
ware analysis. In: Proceedings of the IEEE Symposium on Security and Privacy
(Oakland 2007), May 2007, IEEE Computer Society Press, Los Alamitos (2007)
Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A Crawler-based Study of
Spyware in the Web. In: Proceedings of the Network and Distributed System Se-
curity Symposium (NDSS), San Diego, CA (2006)

Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures
for polymorphic worms. In: Proceedings 2005 IEEE Symposium on Security and
Privacy, Oakland, CA, USA, May 8-11, 2005, IEEE Computer Society Press, Los
Alamitos (2005)

Norman Solutions: Norman sandbox whitepaper (2003),
http:// |download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf
Nykter, M., Yli-Harja, O., Shmulevich, I.: Normalized compression distance for
gene expression analysis. In: Workshop on Genomic Signal Processing and Statistics
(GENSIPS) (May 2005)

Prince, M.B., Dahl, B.M., Holloway, L., Keller, A.M., Langheinrich, E.: Under-
standing how spammers steal your e-mail address: An analysis of the first six
months of data from project honey pot. In: Second Conference on Email and Anti-
Spam (CEAS 2005) (July 2005)

Walters, B.: VMware virtual platform. j-LINUX-J 63 (July 1999)

Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King,
S.T.: Automated web patrol with strider honeymonkeys: Finding web sites that
exploit browser vulnerabilities. In: Proceedings of the Network and Distributed
System Security Symposium, NDSS 2006, San Diego, California, USA (2006)
Wehner, S.: Analyzing worms and network traffic using compression. Technical
report, CWI, Amsterdam (2005)

Yegneswaran, V., Giffin, J.T., Barford, P., Jha, S.: An Architecture for Generat-
ing Semantics-Aware Signatures. In: Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA, August 2005, pp. 97-112 (2005)

http://vil.nai.com/vil/content/v_100454.htm
http://www.microsoft.com/technet/security/default.mspx
http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf
http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.pdf

	Introduction
	Anti-Virus Clustering of Malware
	Understanding Anti-Virus Malware Labeling
	Properties of a Labeling System
	Limitations of Anti-Virus

	Behavior-Based Malware Clustering
	Defining and Generating Malware Behaviors
	Clustering of Malware

	Evaluation
	Performance and Parameterization
	Comparing AV Groupings and Behavioral Clustering
	Measuring the Completeness, Conciseness and Consistency
	Application of Clustering and Behavior Signatures

	Related Work
	Limitations and Future Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

